Projekte - Details
Verbundvorhaben: Integrierte Holz-Stahl-Hybridelemente für Gewerbe- und Mehrgeschossbau; Teilvorhaben 1: Modellierung von Statik und Schallschutz von Holz-Stahl-Hybridsystemen - Akronym: HS-Hybrid
Anschrift
Technische Universität München - Holzforschung München
Winzererstr. 45
80797 München
Winzererstr. 45
80797 München
Projektleitung
FKZ
22009817
Anfang
01.10.2019
Ende
31.05.2023
Projektwebsite
Ergebnisverwendung
In diesem Projekt wurden sowohl experimentelle als auch numerische Arbeiten durchgeführt. Es wurde ein automatisiertes und parametrisiertes Modell für das Hybridsystem entwickelt, das die Analyse des Tragwerks durch Planer ermöglicht. Das Modell kann das System unter statischen, zeitlich-harmonischen, zeitlich-transienten, thermischen und mechanischen Belastungen analysieren. Aus den Versuchen an kleinen Hybridbauteilen wurde eine geringe Steifigkeit und Tragfähigkeit der Verbindung zwischen dem Stahlblech und dem Holz festgestellt. Hochrechnungen der zu erwartenden Durchbiegungen bei größeren Spannweiten zeigten, dass die Anforderungen an die Gebrauchstauglichkeit mit den gewählten Trapezprofilen nur schwer erfüllt werden können. Um die Steifigkeit des Systems zu erhöhen, ist entweder eine sehr große Anzahl von Verbindungselementen oder ein Stahl-Holz-Verbund erforderlich. Die Simulationen und die Versuche haben gezeigt, dass das Beulen der Stahlbleche bei hohen Schubbeanspruchungen in der Nähe der Auflager für eine sichere Bemessung maßgebend wird. Die Ergebnisse, die im Bereich des Brandschutzes mit sehr dünnen und dicken Stahlblechen erzielt wurden, zeigten, dass dicke Stahlbleche mehr Wärme auf die obere Holzplatte übertragen. Es wurde gezeigt, dass höhere Eigenfrequenzen mit dickeren Stahlblechen, höheren Stahlkomponenten und dickeren Holzplatten erreicht werden. Strukturen mit Nadelholz- und Baubuche-Furnierschichtholz erreichten vergleichbare Eigenfrequenzen. Darüber hinaus wurden höhere Dämpfungsparameter identifiziert für Prüfkörper mit größerer Kontaktfläche. Dies war der Fall für dickere Stahlbleche, die sich kaum verformten. Es wurden Alternativen analysiert, um mit einem veränderten Hybridelementaufbau die 10 m Spannweite zu erreichen. Strukturen mit C-Profilen können bessere Holz-Stahl-Hybrid-Alternativen für Anwendungen unter mechanischer Belastung bei größeren Spannweiten sein.
Aufgabenbeschreibung
Holz wird bislang in gewerblichen Gebäuden nicht oder nur in geringem Maß in Deckenkonstruktionen eingesetzt. Gründe dafür sind die in solchen Gebäuden erforderlichen großen Spannweiten, die im reinen Holzbau nur schwer erreichbar sind. Um die statischen und dynamischen Anforderungen zu erfüllen, sind große Trägerabmessungen aus Vollholz oder Brettschichtholz notwendig, die oft nicht mehr wirtschaftlich sind. Außerdem lassen sich mit Holz die Schallschutzanforderungen häufig nicht erfüllen, da wegen der niedrigen Rohdichte und der daraus resultierenden geringen Masse von Holzbauelementen ein vielschichtiger Deckenaufbau notwendig ist, der kompliziert und wirtschaftlich nicht konkurrenzfähig ist. In den letzten Jahrzehnten sind jedoch neue Holzwerkstoffe auf dem Markt erschienen, die höhere Festigkeits- und Steifigkeitseigenschaften als traditionelles Brettschichtholz besitzen. Zu nennen sind in diesem Zusammenhang vor allem Furnierschichtholz aus Fichte oder Buche. Um diese Produkte wirtschaftlich in großen Bauprojekten mit den dort üblichen großen Spannweiten einsetzen zu können, ist jedoch die Entwicklung von hochwertigen Hybridsystemen nötig. Bislang finden in diesen Bereichen hauptsächlich Stahlbeton, Stahlflachdecken mit Ortbeton oder in Trockenbauweise Anwendung. Das Ziel dieses Projekts ist die Entwicklung eines Hybridelements aus Holzwerkstoffen und Stahlblechen mit großen freien Spannweiten, die in Gewerbegebäuden und im Mehrgeschossbau als Standardelemente verwendet werden können. Neben der Entwicklung der HSH-Elemente selbst wurden in diesem Vorhaben auch FE-Analyse durchgeführt, die nicht nur die statische Anwendung von HSH-Elementen ermöglichen, sondern zugleich weitere Anforderungen im Bereich Schallschutz und Schwingungsverhalten abdecken. Zusätzlich ist der Brandschutz ein weiteres Thema für den sicheren Einsatz des Elements in strukturellen Anwendungen. In diesem Projekt wurde auch Brandanalyse sowohl numerisch als auch experimentell durchgeführt.
Abschlussbericht